Selective band gap manipulation of graphene oxide by its reduction with mild reagents

نویسندگان

  • M. A. Velasco - Soto
  • J. Alvarez - Quintana
  • Y. Cao
  • L. Nyborg
  • L. Licea - Jiménez
چکیده

Graphene oxide (GO) can be used as an electron acceptor for polymeric solar cells but still band gap matching for electron donor and acceptor demands more study. The generation of the exciton in such materials is intimately related to the optical band gap. However, exciton dissociation is related to transport band gap that controls the device performance, particularly the open circuit voltage and short circuit current. Therefore, the modulation of the optical gap is useful because it results into tuning of the transport gap. The interest of the present work is to study the reduction of graphene oxide (GO) at room temperature, using environmental friendly reagents like glucose, fructose and ascorbic acid for the modulation of a band gap. It has been found that glucose and fructose function effectively only in presence of NH4OH. Although ascorbic acid can reduce GO alone, NH4OH speeds up the reaction. The optical band gap of GO can be reduced and tuned effectively from 2.7 eV to

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique

Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...

متن کامل

Mn (III) salen complex supported on graphene oxide nanosheets as a highly selective and recoverable catalyst for the oxidation of sulfides

In this study, Mn (III) salen complex was synthesized and immobilized onto the graphene oxide, which is modified by 3-chloropropyltrimethoxy silane. Heterogeneous catalyst was characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, fourier transform infrared spectra, nitrogen adsorption−desorption isotherm and atomic absorption spectroscopy. The catalyt...

متن کامل

ویژگی‌های اپتیکی و ساختاری نانوذرات دی‌اکسید تیتانیوم تثبیت شده بر روی اکسید گرافین در اثر عملیات حرارتی

In this paper, we study the decorated graphene oxide with titanium dioxide nanoparticles. In order to produce this nanomaterial, the titanium dioxide nanoparticles were produced and anchored simultaneously on graphene oxide sheets by arc current. The morphology of the prepared samples was studied by scanning and tunneling electron microscopy, showing that nanoparticles were stabilized on the gr...

متن کامل

A Review on Thermal Exfoliation of Graphene Oxide

Exfoliation, i.e. individual separation of carbon sheets, is of great interest to produce single-layered graphene nanosheets. Chemical or thermal treatments are popular approaches to exfoliate graphite chunks. In general, these conventional methods are assisted with intercalation via covalent or non-covalent functionalization, expansion, and swelling, adsorption of organic molecules in gas phas...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015